Unit 2; Part 3: Multiplying and Dividing Fractions

Multiplying fractions is pretty straight forward. Now that we understand the fundamentals of fractions, this should be pretty easy. There are 3 steps: 

1. Multiply the top numbers (the numerators).

2. Multiply the bottom numbers (the denominators).

3. Simplify the fraction if needed.

Lets do a few examples, then you can practice.

See Khan Academy on Multiplying Fractions Links to an external site.

Example 1: Multiply the fractions

\frac{8}{10}\times\frac{5}{16}810×516

\frac{8}{10}\times\frac{5}{16}=\frac{8\cdot5}{10\cdot16}=\frac{40}{160}\:reduce\:\frac{40}{160}\:\div4=\frac{10}{40}\div10=\frac{1}{4}810×516=851016=40160reduce40160÷4=1040÷10=14

Example 2: Multiply the mixed numbers

4\frac{1}{6}\times4\frac{6}{11}416×4611

 

Here, we will need to convert the mixed numbers into improper fractions.

6\times4+1=25\:\:\:\:\:\:\frac{25}{6}\:\:\:\:\:\:\:\:\:\:\:\:\:and\:\:\:\:\:\:\:\:\:\:\:\:\:\:11\times4+6=50\:\:\:\:\:\:\frac{50}{11}6×4+1=25256and11×4+6=505011

 

\frac{25}{6}\times\frac{50}{11}=\frac{25\cdot50}{6\cdot11}=\frac{1,250}{66}256×5011=2550611=1,25066

Convert back to mixed number.

1,250\div66=18\:r621,250÷66=18r62

18 is the whole number, the remainder (62) is the numerator and the denominator remains the same (66).

18\frac{62}{66}186266 Cannot be reduced.

Practice 2.3.A

Multiply the fractions and/or mixed number, reduce.

1. 10\frac{1}{2}\times1\frac{6}{6}1012×166

2. \frac{5}{30}\times200530×200

3. \frac{1}{5}\times\frac{3}{7}15×37

4. \frac{3}{4}\times\frac{1}{12}34×112

5. \frac{12}{48}\times\frac{1}{2}1248×12

 

Dividing fractions is almost the same as multiplying fractions. To divide any number by a fraction: Multiply the number by the reciprocal of the fraction. The reciprocal of a number is: 1 divided by the number. The reciprocal of 2 is 1/2 (half) and the reciprocal of 10 is 1/10 (=0.1). Every number has a reciprocal except 0. For our fractions, when we divide it by one, it "flips", it turns the fraction upside-down. the\:reciprocal\:of\:\frac{1}{3}\:is\:\frac{3}{1}.thereciprocalof13is31.

Once you convert the second fraction into it's reciprocal, you multiply across.

Lets divide: \frac{5}{8}\div\frac{1}{4}58÷14

\frac{5}{8}\div\frac{1}{4}=\frac{5}{8}\times\frac{4}{1}=\frac{5\cdot4}{8\cdot1}=\frac{20}{8}58÷14=58×41=5481=208

 

 

Convert the improper fraction into a mixed number.

20\div8=2\:r4\:\:\:\:\:\:2\frac{4}{20}20÷8=2r42420

Simplify the resulting fraction if possible. 

4\div4=1\:\:\:\:\:\:\:\:\:\:\:\:\:20\div4=54÷4=120÷4=5

               2\frac{4}{20}=2\frac{1}{5}2420=215

 

Example 1: Divide the following fractions and/or mixed numbers

2\frac{4}{9}\div\frac{16}{19}249÷1619

 

First, convert mixed number into improper fraction.

9\times2+4=22\:\:\:\:\frac{22}{9}9×2+4=22229

 

Find the reciprocal of the second fraction and solve.

\frac{22}{9}\div\frac{16}{19}=\frac{22}{9}\times\frac{19}{16}=\frac{22\cdot19}{9\cdot16}=\frac{418}{144}229÷1619=229×1916=2219916=418144

 

 

Convert improper fraction to a mixed number.

 

 

2\frac{130}{144}\:\:\:\left(\div2\right)=\:2\:\:\frac{65}{72}2130144(÷2)=26572

Practice 2.3.B

Divide the fractions and/or mixed number, reduce.

1. \frac{2}{3}\div\frac{3}{4}23÷34

2. \frac{2}{200}\div\frac{1}{125}2200÷1125

3. \frac{1}{75}\div\frac{1}{80}175÷180

4. \frac{1}{4}\div\frac{5}{8}14÷58

5. \frac{1}{4}\div\frac{5}{8}14÷58

 

 

 Submit practice assignments HERE