
Network Programming in Python I
Justin Ellis MBA



Any Questions?

Review



Errors



Parse errors happen when you make an error in the syntax of your program. Syntax errors are like 
making grammatical errors in writing. If you don’t use periods and commas in your writing then you are 

making it hard for other readers to figure out what you are trying to say. Similarly Python has certain 
grammatical rules that must be followed or else Python can’t figure out what you are trying to say.

Usually ParseErrors can be traced back to missing punctuation characters, such as parentheses, 
quotation marks, or commas. Remember that in Python commas are used to separate parameters to 

functions. Paretheses must be balanced, or else Python thinks that you are trying to include everything 
that follows as a parameter to some function.

ParseError



TypeErrors occur when you you try to combine two objects that are not compatible. For example

you try to add together an integer and a string. Usually type errors can be isolated to lines that 

are using mathematical operators, and usually the line number given by the error message is an 

accurate indication of the line.

TypeError



Name errors almost always mean that you have used a variable before it has a value. Often NameErrors
are simply caused by typos in your code. They can be hard to spot if you don’t have a good eye for 

catching spelling mistakes. Other times you may simply mis-remember the name of a variable or even a 
function you want to call. 

NameError



Value errors occur when you pass a parameter to a function and the function is expecting a certain 
limitations on the values, and the value passed is not compatible.

ValueError



A for loop is used for iterating over a sequence (that is either a list, a tuple, a 

dictionary, a set, or a string).
This is less like the for keyword in other programming languages, and works more 

like an iterator method as found in other object-orientated programming languages.
With the for loop we can execute a set of statements, once for each item in a list, 

tuple, set etc.

For Loop



Even strings are iterable objects, they contain a sequence of characters:

For Loop



With the break statement we can stop the loop before it has looped through all the 
items:

For Loop



For Loop



With the continue statement we can stop the current iteration of the loop, and continue with the next:

For Loop



To loop through a set of code a specified number of times, we can use the range() function,
The range() function returns a sequence of numbers, starting from 0 by default, and increments by 1 (by 

default), and ends at a specified number.
Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

For Loop



The range() function defaults to 0 as a starting value, however it is possible to specify the starting value 
by adding a parameter: range(2, 6), which means values from 2 to 6 (but not including 6):

For Loop



The range() function defaults to increment the sequence by 1, however it is possible to specify the 
increment value by adding a third parameter: range(2, 30, 3):

For Loops



The else keyword in a for loop specifies a block of code to be executed when the loop is finished:
Note: The else block will NOT be executed if the loop is stopped by a break statement.

For Loop



A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

For Loops



for loops cannot be empty, but if you for some reason you have a for loop with no content, put in the 
pass statement to avoid getting an error.

For Loops



With the while loop we can execute a set of statements as long as a condition is true.

remember to increment i, or else the loop will continue forever.
The while loop requires relevant variables to be ready, in this example we need to 

define an indexing variable, i, which we set to 1.

While Loops



With the continue statement we can stop the current iteration, and continue with 
the next:

While Loops



With the else statement we can run a block of code once when the condition no 
longer is true:

While Loops



The While loop can be used the same way as a for loop

While Loops



The While loop can be used the same way as a for loop

While Loops


