Network Programming in Python |

Justin Ellis MBA

Review

Any Questions?

Strings

9.2. A Collection Data Type

So far we have seen built-in types like: int , float, bool, str and we've seen lists. int, float, and
beol are considered to be simple or primitive data types because their values are not composed of any
smaller parts. They cannot be broken down. On the other hand, strings and lists are different from the
others because they are made up of smaller piecas. In the case of strings, they are made up of smaller

strings 2ach containing one character.

Types that are comprised of smaller pieces are called collection data types. Depending on what we are
doing, we may want to treat a collection data type as a single entity (the whole), or we may want to access
its parts. This ambiguity is usaful.

Strings can be defined as sequential collections of characters. This means that the individual characters
that make up the string are assumad to be in a particular order from left to right.

A string that contains no characters, often referred to as the empty string, is still considered to be a string.
It is simply a sequence of zero characters and is represented by * or * (two single or two double guotes
with nothing in between).

Strings

9.3. Operations on Strings

In general, you cannot perform mathematical operations on strings, even if the strings look like numbers.
The following are illegal {assuming that = ge has type string):

Interestingly, the + operator does work with strings, but for strings, the + operator represents
concatenation, not addition. Concatenation means joining the two operands by linking them end-to-end.

Original - 1 of 1 Show in Codelens Share Code

1 fruit = "banana”
' bakedGood = " nut bread"”
¢ print(fruit + bakedGood)

banana nut bread

Activity: 9.3.1 ActiveCode (ch(8_adc

The output of this program is banzna nut bread . The space before the word nut is part of the string and
i= mnecessary to produce the space between the concatenated strings. Take out the space and run it again.
.

Strings

works on strings. It performs repetition. For example, 'Fun'#3 is 'FunfunFun’ .
of the operands has to be a string and the other has to be an integer.

Original - 1 of 1 Show in CodelLens Share Code

1 print("Go" *
name = "Pac
nrint (name

!
.

nrint (name + "Go" * 3)
A J

print{(name + "Go") °

/

GoGoGoGoGoGo
PackersPackersPackers
PackersGoGoGo
PackersGoPackersGoPackersGo

Activity: 9.3.2 ActiveCode (ch02_mult

This interpretation of + and =

equivalent to 4+2+2 we expect -

example that the order of operations for = :

done before the concatenation. If you want to cause the concatenation to be done first, you will need to us
parenthesis.

Strings

The indexing operator {Python uses square brackets to enclose the index) selects a single character from
a string. The characters are accessed by their position or index valus. For example, in the string shown
below, the 14 characters are indexed left to right from postion 0 to position 13.

10 11 12 13

14 13 -12 11 -10 9 -8 -7 6 -5 -4 -3 2 -
It is also the case that the positions are named from right to left using negative numbers where -1 is the
rightmost index and so on. Mote that the character at index & (or -8) is the blank character.

Strings

Original - 1 of 1 Show in Codel ens Share Code

1 school = "Luther College”

lastchar = school[-1]
rint({lastchar)

Activity: 9.4.1 ActiveCode

n scheol[2] S 5 the character at index 2 from and creates a new
containing just this one character. The variable = refers to the res

Remember that computer tists often start counting from zero. The letter at index zero of "Luther
College” is L. So at position [2] we have the letter ©.

want the zero-eth letter of a string, you just put 0, or any expression with the value 0, in the brackeats.

The expression in brackets is called an index. An index specifies a member of an ordered collection. In this
case the collection of charac n the string. The ind = ch character you want. It can be any
integer expression so long as it evaluates to a valid index value.

Mote that indexing returns a string — Python has no special type for a single character. It is just a string of
length 1.

Strings

We previously saw that each turtle instance has its own attributes and a number of methods that can be
applied to the instance. For example, we wrote tess.right when we wanted the turtle object tess to
perform the right method to turn to the right 90 degrees. The “dot notation” is the way we connect the
name of an object to the name of a method it can perform.

Strings are also objects. Each string instance has its own attributes and methods. The most important
attribute of the string is the collection of characters. There are a wide variety of methods. Try the following
program.

Original - 1 of 1 Show in Codelens Share Code

Wk

print(tt)

HELLO, WORLD
hello, world

Activity: 9.5.1 ActiveCode (chpl2

Strings

In this example, upper is a method that can be invoked on any string object to create a new string in which
all the characters are in upperc 1o ¢ in a similar fashion changing : acters in the string to
lowercase. (The original strin remains unchanged. Anew string +t is created.)

In addition to upper and r , the following table provides a summary of some other useful string
methods. There are a fav ecode examples that follow so that you can try them ocut.

Method Parameters Description

upper none Returns a string in all uppercase

lower none Retums a string in all lowercase
none Returns a string with first character capitalized, the rest lower
none Returns a string with the leading and trailing whitespace removed

Istrip none Returns a string with the leading whitespace removed

rstrip none Returns a string with the trailing whitespace removed

count item Returns the number of occurrences of item

replace old, new Replaces all occurrences of old substring with new

center width Returns a string centered in a field of width spaces

ljust width Returns a string left justified in a field of width spaces
rjust width Returns a string right justified in a field of width spaces
find item Returns the leftmost index where the substring item is found, or -1 if not found

rfind item Returns the rightmost index where the substring item is found, or -1 if not
found

index item Like find except causes a runtime error if item is not found
rindex item Like rfind except causes a runtime error if item is not found
format substitutions Involved! See String Format Method, below
‘You should experiment with these methods so that you understand what they do. Note once again that the

methods that return strings do not change the original. You can also consult the Python documentation for
strings.

Strings

9.5.1. String Format Method

In grade school quizzes a common convention is to use fill-in-the blanks. For instance,

Hello |

and you can fill in the name of the person greeted, and combine given text with a chosen insertion. e use
ython has a similar construction, better called fill-in-the-braces. The string method

this as an anal
bstitutions into places in a string enclosed in braces. Run this code:

Criginal - 1 of 1 Show in Codelens Share Code

person = input{'Your nams: ")
"Hello {}!".formst({person)

2 greeting =
' print{greeting)

Strings

ere are several new ideas herel

method has a special form, with braces embedded. Such a string is called a
are embedded are replaced by the value of an expression taken from
parameter list for th t method. There are many variations on the syntax between the braces. In
this case we use the syntax where the first (and only) location in the string with braces has a substitution
mads from the first (and only) parameter.

In the code above, this new string is assigned to the identifier greeting , and then the string is printed.

The identifier greeting was introduced to break the operations into a clearer sequence of steps. However,
since the value of greeting y referenced once, it can be eliminated with the more concise version:

Original - 1 of 1 Show in Codelens Share Code

Hello Justin!

Strings

ere are several new ideas herel

method has a special form, with braces embedded. Such a string is called a
are embedded are replaced by the value of an expression taken from
parameter list for th t method. There are many variations on the syntax between the braces. In
this case we use the syntax where the first (and only) location in the string with braces has a substitution
mads from the first (and only) parameter.

In the code above, this new string is assigned to the identifier greeting , and then the string is printed.

The identifier greeting was introduced to break the operations into a clearer sequence of steps. However,
since the value of greeting y referenced once, it can be eliminated with the more concise version:

Original - 1 of 1 Show in Codelens Share Code

Hello Justin!

Strings

ere are several new ideas herel

method has a special form, with braces embedded. Such a string is called a
are embedded are replaced by the value of an expression taken from
parameter list for th t method. There are many variations on the syntax between the braces. In
this case we use the syntax where the first (and only) location in the string with braces has a substitution
mads from the first (and only) parameter.

In the code above, this new string is assigned to the identifier greeting , and then the string is printed.

The identifier greeting was introduced to break the operations into a clearer sequence of steps. However,
since the value of greeting y referenced once, it can be eliminated with the more concise version:

Original - 1 of 1 Show in Codelens Share Code

Hello Justin!

Strings

There can be multiple substitutions, with data of any type. Next we use floats. Try original price $2.50 with a

Original - 1 of 1 Show in Codelens Share Code

1 origPrice = float(input('Enter the original price:
ount = float({input(Ent t percentage:
discount/ 1€ origPri

discounted by {}% is ${}.'.format{origPrice, discount, m

5 print(calculation)

iscounted by 7.8% is %2.325.

.5.1.3 ActiveCode (chi

The parameters are inserted into the braces in order.

If you used the data suggested, this result is not satisfying. Prices should appear with exactly two places
beyond the decimal point, but that is not the default way to display floats.

Format strings can give further information inside the braces showing how to lly format data. In
particular floats can with a specific number of decimal places. For two decimal places, put :.
inside the braces for the monetary values:

Strings

There can be multiple substitutions, with data of any type. Next we use floats. Try original price $2.50 with a

Original - 1 of 1 Show in Codelens Share Code

1 origPrice = float(input('Enter the original price:
ount = float({input(Ent t percentage:
discount/ 1€ origPri

discounted by {}% is ${}.'.format{origPrice, discount, m

5 print(calculation)

iscounted by 7.8% is %2.325.

.5.1.3 ActiveCode (chi

The parameters are inserted into the braces in order.

If you used the data suggested, this result is not satisfying. Prices should appear with exactly two places
beyond the decimal point, but that is not the default way to display floats.

Format strings can give further information inside the braces showing how to lly format data. In
particular floats can with a specific number of decimal places. For two decimal places, put :.
inside the braces for the monetary values:

Strings

Crriginal - 1 of 1 Show in Codel ens Share Code

origPrice = float(input('Enter the originsl price:
? discount = float(input('Enter discount percenta
' newPrice = (1 - discount/18@)%*origPri
1 calculation = '%{:.2f} discounted by {}¥ i
» print({calculation)

$2.5@ discounted by 7.8% is $2.3:

Activity: 9.5.1.4 ActiveCode (ch08_methodsk

9.6. Length

The len function, when applied to a string, returns the number of characters in a string.

Original - 1 of 1 Show in Codelens Share Code

1 fruit = "Banana"
2 print(len(fruit))

Activity: 9.6.1 ActiveCode (chplE

9.6. Length

The len function, when applied to a string, returns the number of characters in a string.

Original - 1 of 1 Show in Codelens Share Code

1 fruit = "Banana"
2 print(len(fruit))

Activity: 9.6.1 ActiveCode (chplE

Strings

Alternatively in Python, we can use negative indices, which count backward from the end of the string. The
expression fruit[-1] yields the last letter, fruit[-z] yields the second to last, and so on. Try it! Most

other languages do not allow the negative indices, but they are a handy feature of Python!

Strings

9.7. The Slice Operator

A substring of a string is called a slice. Selecting a slice is similar to selecting a character:

Original - 1 of 1 Show in Codelens Share Code

oo
-

m m
9 3 3

Activity: 9.7.1 ActiveCode (chp0

cz operator [n:m] returns the part of the string from the n'th character to the m'th character,
including the first but excluding the last. In other w it ith the character at index n and go up to but
do not include the character at index m. This behavior may seem counter-intuitive but if you recall the
range function, it did not include its end point either.

If you omit the fi d efore the colon), the slice starts at the beginning of the string. If you omit the
second index, the slice goes to the end of the string.

is no Index Out Of Range exception for a slice. A slice is forgiving and shifts any offending index to
ething legal.

Strings

9.8. String Comparison

The comparison operators also work on strings. To see if two strings are equal you simply write a boolean
expression using the equality operator.

Original - 1 of 1 Show in Codel ens Share Code

= "banana”
? if word == "banana”:
print{"¥es, we have bananas!™)
1 else:

print{"¥es, we have NO bananas!™)

Yes, we have bananas!

Activity: 9.8.1 ActiveCode (ch02

Other comparison operations are useful for putting words in lexicographical order. This is similar to the
alphabetical order you would use with a dictionary, except that all the uppercase letters come before all the
lowercase letters.

Original - 1 of 1 Show in Codel ens Share Code

word = "zebra"

if word < "banana™:
print({"Your word,
elif word > "banana™:
print{"Your word,
else:

] n

+ word + ", comes before banana.")

LN fs i R

]]

+ word + ", comes after banana.")

.

print{"¥es, we have no bananas!")

WCa

Your word, zebra, comes after banana.

Activity: 9.8.2 ActiveCode (ch02_comp2

Strings

Itis probably clear to you that the word apole would be less than {come before) the word banzna . After all,
g is before b in the alphabet. But what if we consider the words le and 2pple 7 Are they the same?

Original - 1 of 1 Show in CodelLens Share Code

1 print("apple” < "banana")

Activity: 9.8.3 ActiveCode (c

It turns out, as you recall from our discussion of variable names, that uppercase and lowercase letters are
considered to be different from one another. The v g they are different is that each

ned a unigque integer value " is B 5 53. The way you can find out the
so-called ordinal value for a given character is to use a character function called ord .

Strings

Original - 1 of 1 Show in Codelens Share Code

Wownoo o
=i @

=
5
=
m

Activity: 9.8.4 ActiveCode (ch0&

When you compare characters or strings to one another, Python converts the characters into their
equivalent ordinal valuas and compares the integers from left to right. As you can see from the example
above, “a" is greater than "A” so “apple” is greater than “Appl

Humans commonly ignore capitalization when comparing two words. However, computers do not. &
commen way to address ssue is to convert strings to a standard format, such as all lowercase, before
perfarming the comparison.

Strings

There is also a similar function called chr that converts integers into their character equivalent.

-1of1 Show in Codelens Share Code

1 print(chr{ses

2 print(chr{es

4 print(chr{49
5 print(chr{

7 print("The " e

print{ord(

The character for 32 is
32

Activity: 9.8.5 Activ

Cne thing to note in the last two examples is the fact that the ce character has an ordinal value (
Even though you den't see it, it is an actual character. Ve sometimes call it a » character.

Strings

9.9. Strings are Immutable

One final thing that makes strings different from some other Python collection types is that you are not
allowed to modify the individual characters in the collection. It is tempting to use the [1 operator on the left
side of an assignment, with the intention of changing a character in a string. For example, in the following
code, we would like to change the first letter of greeting

Original - 1 of 1 Show in Codelens Share Code

1 greeting = "Hello, world!”

' greeting[@] = ']
print({greeting)

Activity: 9.9.1 ActiveCode (cg08_

Error

TypeError: 'str' does mot support item assignment on line 2

Strings

Instead of producing the output 1ellc, world! | this code produces the runtime error Typeer

s not support item assignment .
Strings are immutable, which means you cannot change an existing string. The best you can do is create a
new string that is a variation on the original.

Original - 1 of 1 Show in Codel ens Share Code

1 greeting = "Hello, r1d!”

2 newGreeting = 'J' + gresting[1:]

3 print(n esting)

4 print{greeting) # same as it was

Jello, world!
Hello, world!

Activity: 9.9.2 ActiveCode

The solution here is to concatenate a new first letter onto a slice of gresting . This operation has no effect
on the original string.

Strings

Instead of producing the output 1ellc, world! | this code produces the runtime error Typeer

s not support item assignment .
Strings are immutable, which means you cannot change an existing string. The best you can do is create a
new string that is a variation on the original.

Original - 1 of 1 Show in Codel ens Share Code

1 greeting = "Hello, r1d!”

2 newGreeting = 'J' + gresting[1:]

3 print(n esting)

4 print{greeting) # same as it was

Jello, world!
Hello, world!

Activity: 9.9.2 ActiveCode

The solution here is to concatenate a new first letter onto a slice of gresting . This operation has no effect
on the original string.

Strings

9.10. Traversal and the for Loop: By
ltemq]

Alot of computations involve proc g a collection one item at a time. For strings this means that we
would like to process one character at a time. Often we start at the beginning, select each character in turn,
do something to it, and continue until the end. This pattern of ssing is called a traversal.

We have previo een that the for statement can iterate over the items of a sequence (a list of names
in the case balow)

nal - 1 of 1 Show in Codelens Share Code

im i "Hi " 4 aname +

print{invitation)

Hi Joe. Please come to my party on Saturday!

Hi Amy. Please come to my party on Saturday!

Hi Brad. Please come to my party on Saturday!

Hi Angelina. Please come to my party on Saturday!
Hi Zuki. Please come to my party on Saturday!

Hi Thandi. Please come to my party on Saturday!
Hi Paris. Please come to my party on Saturday!

9.10.1 ActiveCode (¢

Strings

Recall that the loop variable takes on each value in the sequence of names. The body is performed once
for each name. The same was true for the sequence of integers created by the range function.

Original - 1 of 1 Show in Codelens Share Code

for avalue in ran
print{avalue)

a
1
2
3
4
5

[

[T |

9.10.2 ActiveCode (ch

Strings

Since a string is simply a sequence of characters, the for loop iterates over each character automatically.

Original - 1 of 1 Show in Codel ens Share Code

1 for achar in "G t Go":

print{achar)

Activity: 9.10.3 ActiveCode (chC

The loop variable achzr is autematically reassigned each character in the string “Go Spot Go” will
refer to this type quence iteration as iteration by item. Note that it is only possible to process the
characters one at a time from left to right.

Strings

9.11. Traversal and the for Loop: By
Index

Itis also possible to use the rznze function to systematically generate the indices of the characters. The
for loop can then be used to iterate over these positions. These positions can be used together with the
indexing operator to access the individual characters in the string.

Consider the following codelens example.

fruit = "apple”
for idx in range(5):
currentChar = fruit[idx]
print(currentChar)
line that just exec
= next ine to

Frames Objects

Global frame
fruit |["apple"
idx (4

currentChar |"e"

Activity: Codelens 9.11.1 (ch08_T7)

The index positions in “apple” are 0,1,2,3 and 4. This is exactly the same sequence of integers returned by
) . The first time through the for loop, icx will be 0 and the “a" will be printed. Then, idx will be
edto 1 and “p” will be displayed. This will repeat for all the range values up to but not including 5.
Since " has indax 4, this will be exactly right to show all of the characters.

In order to make the iteration more general, we can use the 1en function to provide the bound for range .
This is a very common pattern for traversing any sequence by position. Make sure you understand why the
range function behaves correctly when using 1en of the string as its parameter value.

Strings

Criginal - 1 of 1 Show in Codel ens Share Code

1 fruit = "apple”

? for idx in range(len(fruit)):
print{fruit[idx])

H T = o

m

Strings

9.12. Traversal and the while Loop

The e loop can also control the generation of the index values. Remember that the programmer is
responsible for setting up tl itial condition, making sure that the condition is correct, and making sure
that something changes inside the body to guarantee that the condition will eventually fail.

Original - 1 of 1 Show in Codelens Share Code

print(fruit[p
position = p

Activity: 9.12.1 ActiveCode (ch08_Tc

uit) ,sowhen position is equal to the length of the string, the

The loop o
the loop is not executed. The last character accessed is the one with the

condition i
index leng -1, which is the last character in the string.

Strings

9.13. The in and not in operators

The in operator tests if one string is a substring of another:

Original - 1 of 1 Show in Codelens Share Code

1 print('p"' in "apple’)
2 print('i' in "apple’)

} print(‘ap’ in ‘apple’)
4 print('pa’ in ‘apple')

Activity: 9.13.1 ActiveCode (chp

Strings

The not in operator returns the logical opposite result of in .

Criginal - 1 of 1 Show in Codel ens Share Code

1 print({'x" not in ‘apple’)

Activity: 9.13.3 ActiveCode (chpd _in3

