Network Programming in Python |

Justin Ellis MBA

Review

Any Questions?

Lists

Alist is a sequential collection of Python data values, where each value is identified by an index. The
values that make up a list are called its elements. Lists are similar to strings, which are ordered collections

of characters, except that the elements of a list can have any type and for any one list, the items can be of
different types.

There are several ways to create a new list. The simplest is to enclose the elements in square brackets { [
and]}

[1@, 28, 30, 48]

[spam”, "bungee", "swallow"]

The first example is a list of four integers. The second is a list of three strings. As we said above, the

elements of a list don't have to be the same type. The following list contains a string, a float, an integer, and
another list.

["hello”, 2.8, 5, [1@, 20]]

A list within another list is said 10 be nested and the inner list is often called a sublist. Finally, there is a
special list that contains no elements. It is called the empty list and is denoted

As with strings, the function len returns the length of a list {the number of items in the list). However, since
lists can have items which are themselves lists, it important to note that len only returns the top-most
length. In other words, sublists are considered to be a single item when counting the length of the list.

Original - 1 of 1 Show in Codelens Share Code

alist = ["helle”, 2.0, 5, [1@, 28]]
» print({len{alist))
print{len([spam!", 1, ['Brie', 'Roquefort', 'Pol le VWeq'], [1, 2

Lists

The syntax for : sing the elements of a list is the same as the syntax for accessing the characters of a
string. We use the index operator ([] — not to be confused with an empty list). The expression inside the

specifies the index. Remember that the ing tart at 0. Any integer expression can be used as
an index and as with strings, negative index valugs will locate items from the right instead of from the left

6/1/2021, 7:46:14 AM -5 0of 5 Show in Codelens Share Code

numbers = [17
} print({numbers[
3 print(numbers
1 print{numbers[-2]}
> print(numbers[len(numbers) - 1]}

Activity: 10.4.1 ActiveCode (chy

Lists

in and not in are boolean operators that test membership in a sequence. We used them previously with
strings and they also work here.

Original - 1 of 1 Show in Codelens Share Code

fruit = ["apple”, "orange”, "banana", “"cherry”]

ple” in fruit)
" in fruit)

Activity: 10.5.1 ActiveCode (chp09

Lists

Again, as with strings, the + operator concatenates lists. Similarly, the = operator repeats the items in a
list a given number of times.

Original - 1 of 1 Show in Codelens Share Code

1 fruit = ["apple”, "orange"”, "banana", “cherry"]
([1, 2] + [3, 4])

(fruit + [6, 7, 8, 2])

[1, 2, 3, 4]

['apple', ‘orange’, 'banana‘’, ‘cherry’, &, 7, B,
[e, 8, 8, 6]
[

9]

[1, 2, ["hella', ‘goodbye’], 1, 2, ['helloe', ‘goodbye’]]

Activity: 10.6.1 ActiveCode

5. Ifyou
items (not a list with two

Lists

The slice operation we saw with strings also work on lists. Remember that the first index is the starting point
for the slice and the second number is one index past the end of the slice (up to but not including that
element). Recall also that if you omit the first index (before the colon), the slice staris at the beginning of the
sequence. If you omit the second index, the slice goes to the end of the sequence.

Original - 1 of 1 Show in CodeLens Share Code

1 a_list = ["a', 'b", 'c', "d", "e', "]
2 print({a_list[1:3])

1ist[:4])

Clist[3:])
5 print{a_list[:])}

Lists

Unlike strings, lists are mutable. This means we can change an item in a list by accessing it directly as part
of the assignment statement. Using the indexing operator (square brackets) on the left side of an

gnment, we can update one of the list items.

Original - 1 of 1 Show in Codelens Share Code

fruit = ["banana", "apple”, “"cherry"]

2 print({fruit)

1 fruit[e] = "pear”
, fruit[-1] = "orangs”
5 print(froit)

['banana’, "apple”, ‘cherry’]
['pear', "apple', 'orange']

Activity: 10.8.1 ActiveCode (ch0S

Lists

Using slices to delete list elements can be awkward and therefore error-prone. Python provides an
alternative that is more readable. The del statement removes an element from a list by using its position.

Criginal - 1 of 1 Show in CodelLens Share Code

a=['one', '"two', 'three']
2 del a[1]
3 oprint(a)

S alist = ['a', 'b',

6 del alist[1:5]
/ print{alist)

[*one”, “three’]
['a', "F']

Activity: 10.9.1 ActiveCode (ch0S 11

As you might ex| , del handles negative indi and causes a runtime error if the index is out of range.
In addition, you can use a slice as an index for 4e1 . As usual, slices select all the elements up to, but not
including, the second index. but do not cause runtime errors if the index limits go too far.

Lists

If we execute these assignment statements,

= "banana"

"banana’

we know that = and b will refer to a string with the lefters "banana” . But we don't know yet whether they
point to the same string.

There are two possible ways the Python interpreter could arrange its internal states:

"banana"

aé_—/’j“,

b———> "banana"

I n
» Danana

//
] f’j
T ,/’.
b . Z{"

Inone case, = and b refer to two different string objects that have the same value. In the second case,
they refer to the same object. Remember that an object is something a variable can refer to.

We already know that objects can be identified using their unigue identifier. We can also test whether two
names refer to the same object using the /s operator. The js operator will return true if the two references
are to the same object. In other words, the references are the same. Try our example from above.

1 a
2 b = "banana"

= "banana"

4 print{a is b)

=

Activity: 10.10.1 ActiveCode (chp0S_

The answeris True . This tells us that both a and b re o the same object, and that it is the second of
the two iagrams that describes the relationship ce strings are immutable, Python can

optimize resources by making two names that refer to the same string literal value refer to the same object.

This is not the case with lists. Consider the following example. Here, = and b refer to two different lists,
each of which happens to have the same element values.

Original - 1 of 1 Show in CodelLens Share Code

1 print(a is b)

6 print{a == b)

Activity: 10.10.2 ActiveCode (ch

The reference diagram for this example looks like this:

32/_/.

b “"

=z and b have the same value but do not refer to the same object.

There is one other important thing to notice about this reference diagram. The variable = is a reference to
a collection of references. Those references actually refer to the integer values in the list. In other words,
a list is a collection of references to objects. Interestingly, even though = and & are two different lists (two
different collections of references), the integer object 81 is shared by both. Like strings, integers are also
immutable so Python optimizes and lets everyone share the same object for some commonly used small
integers.

Lists

10.11. Aliasing

Since variables refer to objects, if we assign one variable to another, both variables refer to the same
object;

1 a=[21, 82, 83]
b=a
, print{a is b)

Activity: 10.11.1 ActiveCode (listalias1

Lists

Although this behavior can be useful, it is sometimes unexpected or undesirable. In general, it is safer to

avoid aliasing when you are working with mutable objects. Of course, for immutable objects, there's no
problem. That's why Python is free to alias strings and integers when it sees an opportunity to economize.

10.12. Cloning Lists

IT we want to modify a list and also keep a copy of the original, we need to be able to make a copy of the list
itself, not just the reference. This process is sometimes called eloning, to avoid the ambiguity of the word

Copy.
The easiest way to clone a list is to use the slice operator.
Taking any slice of = creates a new list. In this case the slice happens to consist of the whole list.

Print output (drag er right
corner to n

b = # make a clone usi
print(a == b)
print(a is b)

Objects

print(a)
print(b)
|

line that just cuted

== next line to execute

Lists

10.13. Repetition and References

We have already seen the repetition operator working on strings as well as lists. For example,

Original - 1 of 1 Show in Codelens Share Code

[45, 76, 34, 55, 45, 76, 34, 55, 45, 76, 34, 55]

Activity: 10.13.1 ActiveCode (reprefi

With a list, the repetition operator creates copies of the references. Although this may seem simple enough,
when we allow a list to refer to another list, a subtle problem can arise.

Original - 1 of 1 Show in CodelLens Share Code

origlist = [45,
print({origlist *

newlist = [origlist] * 3

print{newlist)

[45, 76, 34, 55, 45, 76, 34, 55, 45, 76, 34, 55]
[[45, 76, 34, 55], [45, 76, 34, 55], [45, 76, 34, 55]]

Activity: 10.13.2 ActiveCode

newlist is a list of three references to origlist that were created by the repetition operator. The
reference diagram is shown below.

Lists

The following table provides a summary of the list methods shown above. The column labeled result gives
an explanation as to what the return value is as it relates to the new value of the list. The word mutator
means that the list is changed by the method but nothing is returmned (actually none is returned). A hylbrid
method is one that not only changes the list but also returns a value as its result. Finally, if the result is
simply a return, then the list is unchanged by the method.

Be sure to experiment with these methods to gain a better understanding of what they do.

Method Parameters Result Description
append item mutator Adds a new item to the end of a list
insert position, item mutator Inserts a new item at the position given
pop hybrid Removes and returns the last item
hybrid Removes and returns the item at position
mutator Modifies a list to be sorted
reverse mutator IModifies a list to be in reverse order
index item return idx Returns the position of first occurrence of item
count item return ct Returns the number of occurrences of item
remave item mutator Removes the first occurrence of item

Details for these and others can be found in the Python Documentation.

It is important to remember that methods like append , sert, and reverse all return none . This means
that re-assigning mylist to the result of sorting mylist will result in losing the entire list. Calls like these

The append Mmethod adds a new item to the end of a list. It is also possible to add a new item to the end of
a list by using t catenation operator. How: you need to be careful.

Consider the following example. The original list has 3 integers. We want to add the word “cat” to the end of
the list.

— origlist = [45 2, 88] Print output (

-2 corner

origlist.append("cat")

Frames

Step 1 of 2

- Codelens 10.16.1 (app
Here we have u append Which simply modifies the list. In order to use concatenation, we need to write
an assignment statement that uses the accumulator pattern:
origlist = origlist + ["cat™]

that the word “cat” needs to be placed in a list since the concatenation operator needs two lists to do

Print output (
corn

origlist
origlist = origlist + ["cat"]

line that just ted
= next line to execute

0
Frames

It is also important to realize that with append, the original izt is simply modified. On the other hand, with
concatenation, an entirely new list is created. This can be seen in the following codelens example where
newlist refers to a list which is a copy of the original list, origlist |, with the new item “cat” added to the

end. origlist still contains the three values it did before the concatenation. This is why the assignment
aperation is necessary as part of the accumulator pattern.

::rr*igli =t Print output (drag In:n'-'v;r nght comer to

newlist = origlist + [“"cat"]

e that just executed
xt line to execute

Frames Objects

Global frams

Done running {2 steps) origlist
Python Tutor by Philip Guo newlist

Customize visualization (MEW!)

10.17. Lists and for loops

It is also possible to perform list traversal using iteration by item as well as iteration by index.

COriginal - 1 of 1 Show in CodeLens Share Code
1

1 fruits = ["apple"”, "orange", "banana", "cher

3 for afruit in fruits: # by item
4 print(afruit)
E.

apple

arange
banana
cherry

Adctivity: 10.17.1 ActiveCode

It almost reads like natural language: For (every) fruit in (the list of) fruits, print (the name of the) fruit.

We can also use the indices to a 33 the items in an iterative fashion.

Original - 1 of 1 Show in CodelLens Share Code

1 fruits = ["apple”, "orange”, "banana”, "cherry"]
3 for position in rangz(len(fruits)): # by ind
print(fruits[position])

apple

orange
banana
cherry

Activity: 10.17.2 ActiveCode (C

In this example, each time through the loop, the variable pozition is used as an index into the list, printing
the position -€th element. Note that we used 1en as the upper bound on the range so that we can iterate
correctly no matter how many items are in the list.

Lists

Any sequence expression can be used ina for loop. For example, the range function returns a sequence
of integers.

Original - 1 of 1 Show in CodelLens Share Code

1 for number in range(28):
= a:

2 if number % 3 =

print(number)

Activity: 10.17.3 ActiveCode (chp

This example prints all the multiples of 3 between 0 and 19.

re mutable, it is often desirable to traverse a list, modifying each of its elements as you go. The
ving code squares all the numbers from 1 to s using iteration by position.

Original - 1 of 1 Show in Codelens Share Code

numbers = [1
2 print(numbe

4 for i in rangs({len({numbers)):

[1, 2, 3, 4, 5]
[1, 4, 9, 16, 25]

Activity: 10.17.4 Active

Take a moment to think about rar en(numbers)) until you understand how it works. We are interested
here in both the value and its index within the list, so that we can assign a new value to it

10.18. The Accumulator Pattern with
Lists

Remember the n? Many
items in a list and compute a result. In this s

lists

Let's take the problem of adding up all of the items in a list. The following program computes the sum of a

list of numbers

Original - 1 of 1 Show in CodelLens Share Code

1 sum = @
for num in [1,
sSum = sum + num
(sum)

Activity: 10.18.1 ActiveCode

The program begins by defining an accumulator variable, sum , and initializing it to 0 (line 1).

the program iterates over the list (lines and updates the sum on each iteration by adding an item

from the list (line 3). When the loop is finished, sum has accumulated the sum of all of the items in the list.

10.18. The Accumulator Pattern with
Lists

Remember the n? Many
items in a list and compute a result. In this s

lists

Let's take the problem of adding up all of the items in a list. The following program computes the sum of a

list of numbers

Original - 1 of 1 Show in CodelLens Share Code

1 sum = @
for num in [1,
sSum = sum + num
(sum)

Activity: 10.18.1 ActiveCode

The program begins by defining an accumulator variable, sum , and initializing it to 0 (line 1).

the program iterates over the list (lines and updates the sum on each iteration by adding an item

from the list (line 3). When the loop is finished, sum has accumulated the sum of all of the items in the list.

Challenge For each word in add ‘d’ to the end of the word if the word ends in “e” to make it
past tense. Otherwise, add ‘ed’ to make it past te Save these past tense words to a list called

past_tense .

n Codelens Share Code
1117, "pla tin

, 'plant”, "time",

append(past)

print{past_tense)

['adopted', ‘baked', 'beamed’, 'confided®, 'grilled', 'planted’', 'timed", ‘waved', "1

Expand Differences

Testing output (Don't worry about actual

Expand Differences
and expected valu

Testing output (Don't worry about actual

Expand Differences
ted valu

10.19. Using Lists as Parameters

Functions which take lists as arguments and change them during ution al led modifiers and the
hey make are called side effects. Passing a list as an argument ally p a reference to
ot & copy of the list. Since lists are mutable, changes made to the elements referenced by the

parameter change the same list that the argumen 0. For example, the function below takes a

list as an argument and multiplies each element in the

Original - 1 of 1 Show in Codelens Share Code

lement in alList with double its value. """
ition in rar

alist[position] =

things = [2, 5, 9]
print(things)
; doubleStuff(things)

print(thing

[2, 5, 9]
[4, 18, 18]

Activity: 10.19.1 ActiveCode (c!

The parameter aList and the variable things are aliases for the same o

Lists

10.20. Pure Functions

A pure function does not produce side effects. It communicates with the calling program only through
parameters (which it does not modify) and a return value. Here is the doubleStufs fun from the
previous section written as a pure function. To use the pure function version of double stuff to modify
things , you would assign the return value back to things .

Qriginal - 1 of 1 Show in CodelLens Share Code

def doubleStuff(a_list):
""" Return a new list in which contains doubles of the elements in a_li
new_list = []
for walus in a_list:
new_slem = 2 * value
new_list.append(new_elem)

things = [2, 5,

print(things)

[2, 5, 9]
[+, 18, 18]

Activity: 10.20.1 ActiveCode (ch0

10.21. Which is Better?

Anything that can be done with modifiers can also be done with pure functions. In fact, some programming
languages only allow pure functions. There is some evidence that programs that use pure functions are

faster to develop and less error-prone than programs that use modifiers. Nevertheless, modifiers are
convenient at times, and in some cases, functional programs are less efficient.

In general, we recommend that you write pure functions whenever it is reasonable to do so and resort to
maodifiers only if there is a compelling advantage. This approach might be called a funcfional programming
style.

10.22. Functions that Produce Lists

The pure version of doublestuff above made use of an important pattern for your toolbox. Whenever you
need to write a function that creates and returns a list, the pattern is usually:

initialize a result variable to be an empty list
loop

create a new element

append it to result
return the result

Let us show another use of this pattern. Assume you already have a function is prime(x) that can testifx
is prime. Now, write a function to return a list of all prime numbers less than n:

—— F L
def primes _upto(n):
""" Return a List of all prime numbers Less than n. """

result =
for i in range(
if is prime(i):
result.append(i)
return result

Lists

10.23. List Comprehensions

The previous example tes a list from a sequence of values based on some selection criteria. An e;
to do this type of processing in Python is € a list comprehension. List comprehensions are
ncise ways to create lists. The general syntax is:

on> for > i quence> if <condition>]

where the if clause is optional. For example,

Original - 1 of 1 Show in Codelens Share Code

1 mylist = [1,2,3,4,5]

yourlist = [item ** 2 for item in mylist]

5 print(yourlist)

[1, 4, 9, 16, 25]
Activity: 10.23.1 ActiveCode

Tl (pre S, leme iters h
item in a sequence. The items are filtered by the if

statement lets item ta all the values in the list mylist . Each

to the list that is being built. The result is a list of squares of the values in my

« =8 o [

fruits = ["apple”, "banana",
newlist = [x for x in fruits if "a

print(newlist)

, "mango"]

["apple’, 'banana®, "mango’]

Lists

10.24. Nested Lists

A nested list is a list that appears as an element in another list. In this list, the element with index 3 is a
nested list. If we print(nested[3]), we get [1@ . To extract an element from the nested list can
pre d in two steps. First, extract the nested list, then extract the item of interest. It is also possible to
combine those steps using bracket operators that evaluate from left to right.

original - 1 af 1 Show in Codelens Share Code

nested = ["hello", 2.8, 5, [18, 2&]]
2 innerlist = ne

nerlist[1]
, print(item)

/ print(nested[3][1])

Activity: 10.24.1 ActiveCode (ch

10.25. Strings and Lists

Two of the most useful methods on strings in ists of strings. The split method breaks a string into a
list of words. By default, any number of whitespace characters is considered a word houndary.

Original - 1 of 1 Show in CodelLens Share Code

= "The rain in Spain...’
song.split()
% print(wds)

['The', ‘rain’, ‘in", 'Spain..."]
Activity: 10.25.1 ActiveCode (chi=

An optional argument called a delimiter can be used to specify which characters to use as word
boundaries. The following example uses the string ai as the delimiter:

Lists

An optional argument called a delimiter can be used to specify which characters to use as word
boundaries. The following example uses the string ai as the delimiter:

Original - 1 of 1 Show in Codelens Share Code

2 wds song.split("ai’)

1 song = "The rain in Spain...

b oprint(

Activity: 10.25.2 ActiveCode (ch09_split

Notice that the delimiter doesn’t appear in the result.

Lists

10.26. 1ist Type Conversion Function

alled 1ist thattries to tum whatever you give it into a list.

Original - 1 of 1 Show in Codelens Share Code

xs = list("Crunchy Fro
2 print(xs)

Activity: 10.26.1 Activ

: og” is turned into a list by taking eac in the string : acing it in a list. In
ny seqguence can be turned into a list using this function. The result will be a list containing the
riginal sequence. It is not legal to use the 1ist conversion function on any argument that

It is also important to point out that the 1ist conversion function will place each element of the original
sequence in the new list. When working with strings, this is very different than the result of the split
< a string into a list of “words”, 1ist will always break it into a list of

Tuples
10.27. Tuples and Mutabilityq]

So far you have seen two types of sequential collections: strings, which are made up of characters; and
lists, which are made up of elements of any type. Cne of the differences we noted is that the elements of a
list can be modified, but the characters in a string cannot. In other words, strings are immutable and lists
are mutable.

Atuple. like a list, is a sequence of items of any type. Unlike lists, however, tuples are immutable.
Syntactically, a tuple is a comma-separated sequence of values. Although it is not necessary, it is
conventional to enclose tuples in parentheses:

julia = ("Julia", "Roberts", 1967, "Duplicity", 2889, "Actress", "Atlanta, Georgia”)

Tuples are useful for representing what other languages often call records — some related information that
belongs together, like your student record. There is no description of what each of these fields means, but
we can guess. Atuple lets us “chunk” together related information and use it as a single thing.

Tuples support the same sequence operations as strings and lists. For example, the index operator selects
an element from a tuple. A tuple can be the sequence in a for-loop.

As with strings, if we try to use item assignment to modify one of the elements of the tuple, we get an error.

julia[@] = "X
TypeError: "tuple’ object does nmot support item assignment

Of course, even if we can't modify the elements of a tuple, we can make a variable reference a new tuple
holding different information. To construct the new tuple, it is convenient that we can slice parts of the old
tuple and join up the bits to make the new tuple. S0 juliz has a new recent film, and we might want to
change her tuple. We can easily slice off the parts we want and concatenate them with the new tuple.

Criginal - 1 of 1 Show in CodelLens Share Code

Julia”, "Roberts", 1867, "Duplicity”, 2889, " ess”, "Atlanta,
ulia[2])
‘juliaf2:6])

S print(len(julia))

for field in julia:
print(field)

julia = julia[:3] + ("Eat Pray Love™, 2818) + julia[5:]
print(julia)

"Duplicity’, 2883, "A

Julia

Roberts

1967

Duplicity

2889

Actress

Atlanta, Georgia

{*Julia’, 'Roberts®, 1967, 'Eat Pray Love', 2018, "Actr , 'Atlanta, Georgia')

y: 10.27.1 Ac

To create a tuple with a single element (but you're probably not likely to do that too often), we have to
include the final comma, because without the final comma, Python treats the (5) below as an integer in
parentheses:

Criginal - 1 of 1 Show in Codelens Share Code

e({tup))

5 print(type(x))

Activity: 10.27 2 ActiveCode (chp09_tupleZ

Tuples
10.28. Tuple Assignmentq|

Fython has a very powerful tuple assignment feature that allows a tuple of variables on the left of an
assignment to be assigned values from a tuple on the right of the assignment.
{name, surname, birth_year, movie, movie_year, profession, birth_place) = julia

This does the equivalent of seven assignment statements, all on one easy line. One requirement is that the
number of variables on the left must match the number of elements in the tuple.

Once in a while, it is useful to swap the values of two variables. With conventional assignment statements,

we have to use a temporary variable. For example, to swap a and b

temp = a
a=hb
b = temp

Tuple assignment solves this problem neatly:

(a, b) = (b, a)

The left side is a tuple of variables; the right side is a tuple of values. Each value is assigned to its
respective variable. All the expressions on the right side are evaluated before any of the assignments. This
feature makes tuple assignment guite versatile.

Maturally, the number of variables on the left and the number of values on the right have to be the same.

»»> (a, b, c, d)
ValueError: need more than 3 values to unpack

10.29. Tuples as Return Values

Functions can return tuples as return values. This is very useful — we often want to know some batsman's
highest and lowest score, or we want to find the mean and the standard deviation, or we want to know the

. the month, and the day > doing some ecological modeling we may want to know the number
of rabbits and the number of wolves on an island at a given time. In each case, a function (which can only
return a single valug), can create a single tuple haolding multiple ents.

For example, we could write a function that returns both the area and the circumference of a circle of radius
r.

Original - 1 of 1 Show in Codelens Share Code

def circleInfo(r):

s3) of a circle of radius r """

(62.8318, 314.159)

