Network Programming in Python |

Justin Ellis MBA



Review

Any Questions?




11.1. Working with Data Files

So far, the data we have used in this book have all been either coded right into the program, or have been
entered by the user. In real life data reside in files. For example the images we worked with in the image
processing unit ultimately live in files on your hard drive. Web pages, and word processing documents, and
music are other examples of data that live in files. In this short chapter we will introduce the Python
concepts necessary to use data from files in our programs.

For our purposes, we will assume that our data files are text files—that is, files filled with characters. The
Python programs that you write are stored as text files. We can create these files in any of a number of

ways. For example, we could use a text editor to fype in and save the data. We could also download the
data from a website and then save it in a file. Regardless of how the file is created, Python will allow us to
manipulate the contents.

In Python, we must open files before we can use them and close them when we are done with them. As
you might expect, once a file is opened it becomes a Python object just like all other data. Table 1 shows
the functions and methods that can be used to open and close files.

Method
Name Use Explanation

open open{filenames, ‘r') Open a file called filename and use it for reading. This will return a
reference to a file object.

open open(filenams, "w') Open a file called filename and use it for writing. This will also
return a reference to a file object.

filevariable.close() File use is complete.




11.2. Finding a File on your Disk

Opening a file requires that you, as a programmer, and Python agree about the location of the file on your
disk. The way that files are located on disk is by their path You can think of the filename as the short name
for a file, and the path as the full name. For example on a Mac if you save the file hello.txt in

directory the path to that file is / 1 1lo.txt On a Windows machine the path looks
different but the same principles are in use. For example on windows the path might be

'OUrnam / Documen

You can access files in sub-folders, also
alled directories, under your home
directory by adding a slash and the Why is the path separatora / on Unix/Linux/MacOS systems and icrosoft Windows systems?

The History of Path Separators

name of the folder. For example, if you  The concept of a hierarchy of folders was first developed in Unix. On a Unix command line a / is used

had a file called hello.py ina folder to separate folder names in a file path and dashes are used to specify command ling options, e.q.,

called csise thatis inside a folder path/to/Tile/my ows system the / character is used for command

armProjects under your line options, so0 the designers of Windows decided to use the . for separating folder names in a file

home direc then the full name for path, e.g., path\to\file'myfile /long /re Using a  to separate folder names in a path is
problematic because the . character is also used as an escape character for special characters, such
as ‘\n for a new line character. Bottom line, we will always use the / character 1o separate Tolder
names in a path, and even on Windows system the file path will work just fine.

i 158/hello.py . This is called an absolute file paih. An absolufe file
path typically only works on a specific computer. Think about it for a second. What other computer in the
world is going to have an absolute file path that starts with 7 urname ?

If 2 file 5 not in the same folder as your python program, you need to tell the computer how to reach it. A
refative file path starts from the folder that contains your python program and follows a computer’s file
hierarchy. A file hierarchy contains folders which contains files and other sub-folders. Specifying a sub-
folder is easy — you simply specify the sub-folder's name. To specify a parent folder you use the spec
notation because every file and folder has one unigue parent. You can use the .. notation multiple times
in & file path to move multiple levels up a file hierarchy. Here is an example file hierarchy that contains




in a file path to move multiple levels up a file hierarchy. Here is an example file higrarchy that contains
multiple folders, files, and sub-folders. Folders in the diagram are displayed in bold type.

myFiles
— otherFiles
— extraData
|— data4.txt
—— allProjects
— myData
— dataZ.txt
— data3.txt
— myProject
— myPythonProgram.py
— datal.txt

Using the example file hierarchy above, the program, myPythonProgram.py could access each of the data
files using the following relative file paths:

» datal.txt
s . ./myData/data2.txt
* ../myData/data3.txt
» . ./..fotherFiles/extraData/datasd.txt

Here's the important rule to remember: If your file and your Python program are in the same directory you
can simply use the filename like this: cpen( 'myfile.txt', 'r') . Ifyour file and your Python program are
in different directories then you must refer to one or more directories, either in a refative file path to the file
like this. open('../myData/data3.txt’, 'r’) , OFin an absolute file path like

open( ' fusers/bmiller/myFiles/allProjects/myData/datal.t=xt", 'r').



As an example, suppose we have a text file
representing statistics about NFL quarterba
you can imagine that it v

chael
tt Schaub QB HOU 365

QB NO 448
Matt Ryan QB ATL 357 5
el QB KC 262
anchez QB NY]

n Palmer QB CIN
Smith QB SF

Jay Cutler QB CHI
Jon Kitna QB DAL
Tom Brady QB ME

Donovan labb QB WAS
Kevin Kolb QB PHI 11
Aaron Rodgers QB GB

Sam Bradford QB STL

Shaun Hill QB DET 257 416



Files

To open this file, we would call the open function. The variable, fileref , now holds a reference to the file
object returned by open . When we are finished with the file, we can close it by using the close method.
After the file is closed any further attempts to use fileref will result in an error.

-»fileref = open("gbdata.txt™, "r")

!

>Tileref.close()

LT ¥ W W
W W W W




Colt McCoy QB CLE 135
h F

Philip Riv
Matt Hasselb
Jimmy Clausen

oe Flacco QB BAL

Jason Campbell
Peyton Manning
Drew Bre
Matt Ryan QB ATL
Matt C el QB KC
Mark Sanchez QB NYJ
N 217
JAC
Eli Manning QB NYG 339
n Palmer
Smith QB

/ill now use this file as input in a program that will do some data proc
line of the file and print it with some additional text. Because text fi
can use the for loop to iterate through each line of the file.

Aline of a file is defined to be a sequence of chara s up to and including a special character called the
newline charz IT you evaluate a string that contains a ine character you will see the character
represented as o . IT you print a string that contains an
When you are typing a Python program and you pr
a newlin : i rour text at that point.

"loop
as a string of cha rs. The general pattern for processing each line of a text file is as follo

for line in myFile:
mentl
ment2




To process all of our quarterback data, we will use a for loop to iterate over the lines of the file. Using the
split method, we can break each line into a list containing all the fields of interest about the quarterback.
We can then take the values corresponding to first name, lastname, and passer rating to construct a simple

sentent

m Qriginal - 1 of 1

gbfile = open("gbdata

3 for aline in gbfile:
values = aline.split()
print('QB ", values[B], walues[1], 'had a rating of ', values[18] )

7 gbfile.close()

Colt McCoy had a rating of 74.5

Josh Freeman had a rating of 95.9
Michael Vick had a rating of 188.2
Matt Schaub had a rating of 92.8@
Philip Rivers had a rating of 181.8
Matt Hasselbeck had a rating of 73.2
Jimmy Clausen had a rating of 58.4
Joe Flacco had a rating of 93.6
Kyle Orton had a rating of &7.5
Jason Campbell had a rating of B84.5




Note

You can obtain a line from the kKeyboard with the input function, and you can process lines of a
file. Howewver “line” is used differently: With input Python reads through the newline you enter
from the keyboard, but the newline { *'n" } is not included in the line retumned by input . It is

dropped. When a line is taken from a file, the terminating newline /s included as the last character
{unless you are reading the final line of a file that happens to not have a newline at the end).

In the quarterback example it is irrelevant whether the final line has a newline character at the end or not,
since it would be stripped off by the split method call.




11.5. Alternative File Reading Methods

in, recall the tents of the gbdata.txt file.

13
man QB TB 291
chael Vick QB PHI
tt Schaub QB HOU 365 5

Jimmy
Joe Flacco QB BAL

QB NO
Matt Ryan QB ATL
el QB KC

sanchez QB

Smith QB S
Chad Henne QB
Romo QB DAL
tler QB CHI
Jon Kitna QB DAL
Tom Brady QB ME 324 452
en Roethlisberger QB PIT
ollins QB TEN 160
ek Anderson QB ARI 1589
Ryan Fitzpatrick QB BUF
Donovan McMabb QB WAS
in Kolb QB PHI 115 1
on Rodgers QB GB 3
Sam Bradford QB L 4
Shaun Hill QB DET 257 416

In addition to the for loop, Python provides three methods to read data from the input file. The readline
method reads one line from the file and returns it as a string. The string returned by readline will contain
the newline character at the end. This method returns the empty string when it reaches the end of the file.
The readlines method returns the contents of the entire file as a list of strings, wher item in th
represents one i the file. It is also possible to read the entire file into a single string with read - Tab
summarizes these methods and the following on shows them in action.




h file has a

ving the last racter returned. In the case
of the next line in the file. In the case of read or

» infile = open("qbdata.tx
» aline = infile.readline()
- aline

"Colt McCoy QB, CLE\t t222\t1576\te\to\t6ee
» infile = open("gbdata
> linelist = infile.readlines

> print(len(linelist))

>>> print(linelis
['Colt McCoy QB CLE
"Josh Freeman QB T
‘Michael Vi \
'‘Matt Schaub QB HOUY S74\t4370\t24\
> infile = open(“"gbdata.txt™, "r")
»»» filestring = infile.
»»» print{len(filestring
1788
»»» print({filestring[:
Colt McCoy QB CLE
Josh Freeman QB TB
Michael vick QB PHI
Matt Schaub QB HOU
Philip Rivers QB
Matt Ha

TR
g

=
o (=3
=4

S

W

Fs
o

WO rrom
L

N
[=)]

WoR P

A

=
[2}]
(s3]




Use Explanation

Add astring to the end of the file. filevar
must refer to a file that has been opened for
writing.

filevar.write(astring)

Reads and returns a string of »n characters,
ar the entire file a5 a single string it n is not
provided.

read(n) filevar.read()

Returns the next line of the file with all text
up to and including the newline character. I
nis provided as a parameter than only n
characters will be returned if the ling is
longer than n .

Z filevar.readline()

readline(n)

Returns a list of strings, each representing a
single line of the file. If n is not provided then
all lines of the file are returned. If n is
pravided then n characters are read but n is
rounded up so that an entire line is returmned.

readlines{n) filevar.readlines()

Mow let's look at another method of reading our file using a whils loop. This is important because many
other programming languages do not support the for loop style for reading files but they do support the

pattern we’ll show you here.




Files

11.6. Writing Text Files

One of the most commonly performed data pr ing tasks is to read data from a file, manipulate it in
some way, and then write the resulting data out to a new data file to be used for other purposes later. To
accomplish this, the open function disc d above can also be used to create a new file ared for
writing. Note in Table 1 above that the only difference be ning a file for writing and epening a file
for reading is the use of the ag as econd parameter. When we open a
file for writing, a new, empty file with that name is -cept our data. As before,
the function returns a reference to the new file obj

Table 2 above shows one additional file method that we have not used thus far. The write method allows
us to add data to a text file. Recall that text files contain sequen f ters. We usually think of these
as being the lines of the file h line ends with the newline ‘n character. Be
hat the write method take e parameter, a string. When invoked, the characters
added to the end of the file. This means that it is the programmers to include the
as part of the string if desired.

As an example, consider the gbdata.txt file once again. Assume that we have been asked to provide a
file consisting of only the names of the quarterbacks. In addition, the names should be in the order last
name followed by first name with the names separated by a comma. This is a very common type of request.
usually due to the fact that someone has a program that requires its data input format to be different from
what is available.

To construct this file, we will approach the problem using a similar algorithm as above. After opening the
/e will iterate through the lines, break eac into its parts, choose the parts that we need, and then
output them. Eventually, the output will be written to a file.

The program below solves part of the problem. Notice that it reads the data and creates a string consisting
of last name followed by a comma followed by the first name. In this example, we simply print the lines as
they are created.
infile = open(“gbdata.t
aline = infile.readline()
while aline:
items = aline.split
dataline = items[1] + ",
print{dataline
aline = infile.readline()

infile.close()




When we run this program, we see the lines of output on the n. Once we are satisfied that it is
creating the appropriate output, the nex is to add the nec ) [ an output file and
write the data lines to it. To start, we need to open a new ¢ call to the «
function, outfile = open(“gbna . '), using the "w' can choose any file name we like.
It the file does not exist, it will be ted. However, if the file does exist, it will be reinitialized as empty and
you will lose any previous contents.

Once the file has been created, we just need to call the write method passing the string that we wish to
add to the file. In this e string is already being printed so we will just change the print into a call to
the write method. Ho r, there is one additional part of the data line that we need to include. The
newline character needs to be concatenated to the end of the line. The entire line now becomes
outfile.write(dataline + "\n') . We also need to close the file when we are done.

The complete program is shown below.

infile = open("qgbdata.

outfile = open(“gbnames

aline = infile.readline()
while aline:
items = aline.split()
dataline = items[1] + °,
outfile.write(dataline +
aline = infile.readline()

infile.close()
outfile.close()

ontents of the gbnames.txt file are as follows.

Clausen, Jimmy
Flacco, Joe
Orton,Kyle




When we run this program, we see the lines of output on the n. Once we are satisfied that it is
creating the appropriate output, the nex is to add the nec ) [ an output file and
write the data lines to it. To start, we need to open a new ¢ call to the «
function, outfile = open(“gbna . '), using the "w' can choose any file name we like.
It the file does not exist, it will be ted. However, if the file does exist, it will be reinitialized as empty and
you will lose any previous contents.

Once the file has been created, we just need to call the write method passing the string that we wish to
add to the file. In this e string is already being printed so we will just change the print into a call to
the write method. Ho r, there is one additional part of the data line that we need to include. The
newline character needs to be concatenated to the end of the line. The entire line now becomes
outfile.write(dataline + "\n') . We also need to close the file when we are done.

The complete program is shown below.

infile = open("qgbdata.

outfile = open(“gbnames

aline = infile.readline()
while aline:
items = aline.split()
dataline = items[1] + °,
outfile.write(dataline +
aline = infile.readline()

infile.close()
outfile.close()

ontents of the gbnames.txt file are as follows.

Clausen, Jimmy
Flacco, Joe
Orton,Kyle




Final Project

Make python do something

Requirements
* Must work on your machine (Can take code but must cite)

Rubric
* 15 points source code
* 10 points video demonstration
e Submit code from github

Fun Python Projects for Beginners to Try in 2021 | Career Karma



https://careerkarma.com/blog/python-projects-beginners/

